

Complete the Planetary Health Survey (5-10 minutes)

Check your email for your unique survey link:

- Email was sent this morning
 - Sent from Christa Wagner, PhD
 - Subject line: Planetary Health in the Curriculum
- If you cannot find the email, please raise your hand
- Do not forward your email to others with the link (it is unique!)

Please see the **Informational Letter** on Brightspace and within your email for more information and contacts for any questions.

Climate Change, Gastroenteritis, and Malnutrition: What Physicians Should Know from the Inside Out

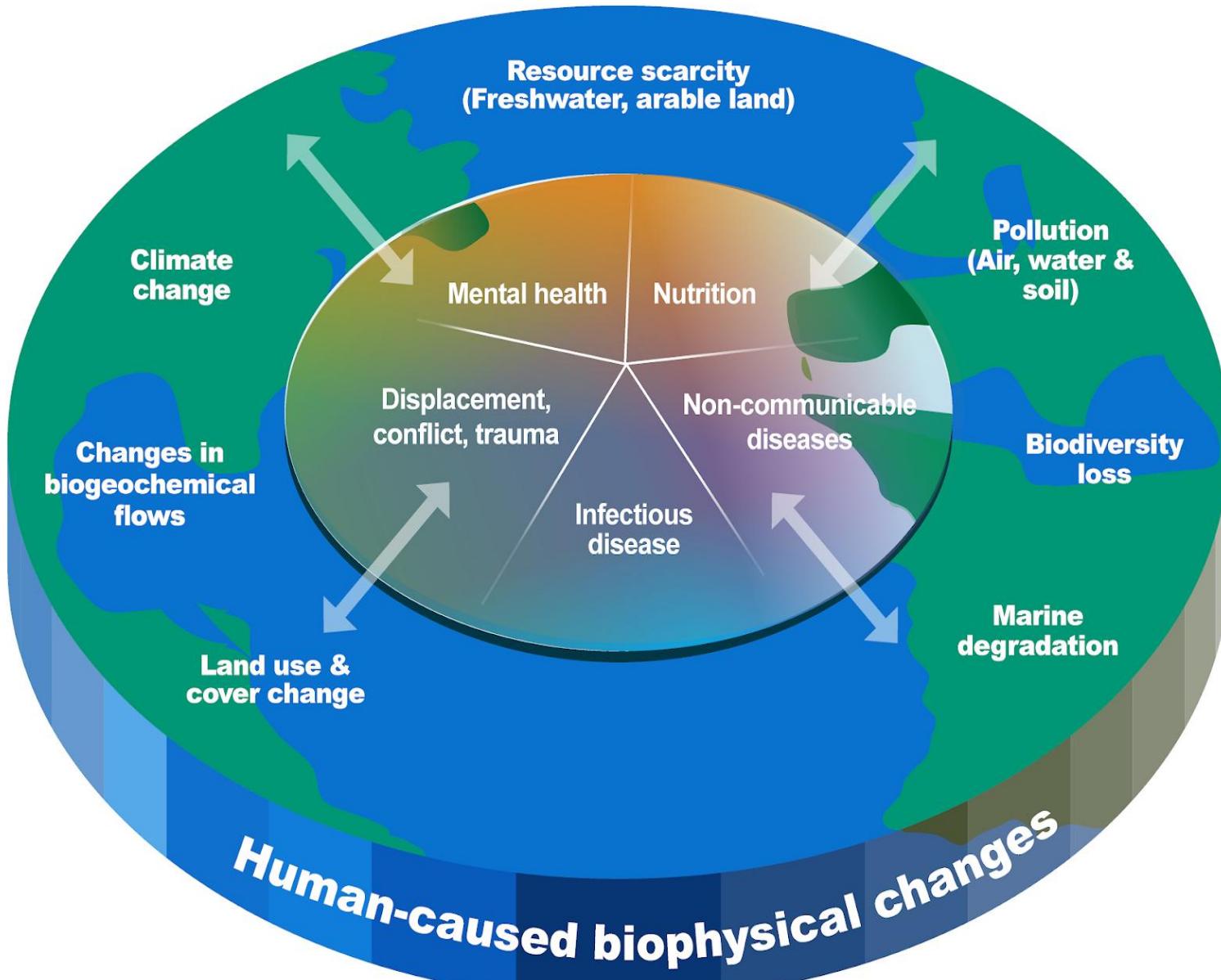
Mike Bodenhausen, MD
Internal Medicine PGY1

Will Graft, MD
Internal Medicine & Psychiatry PGY3

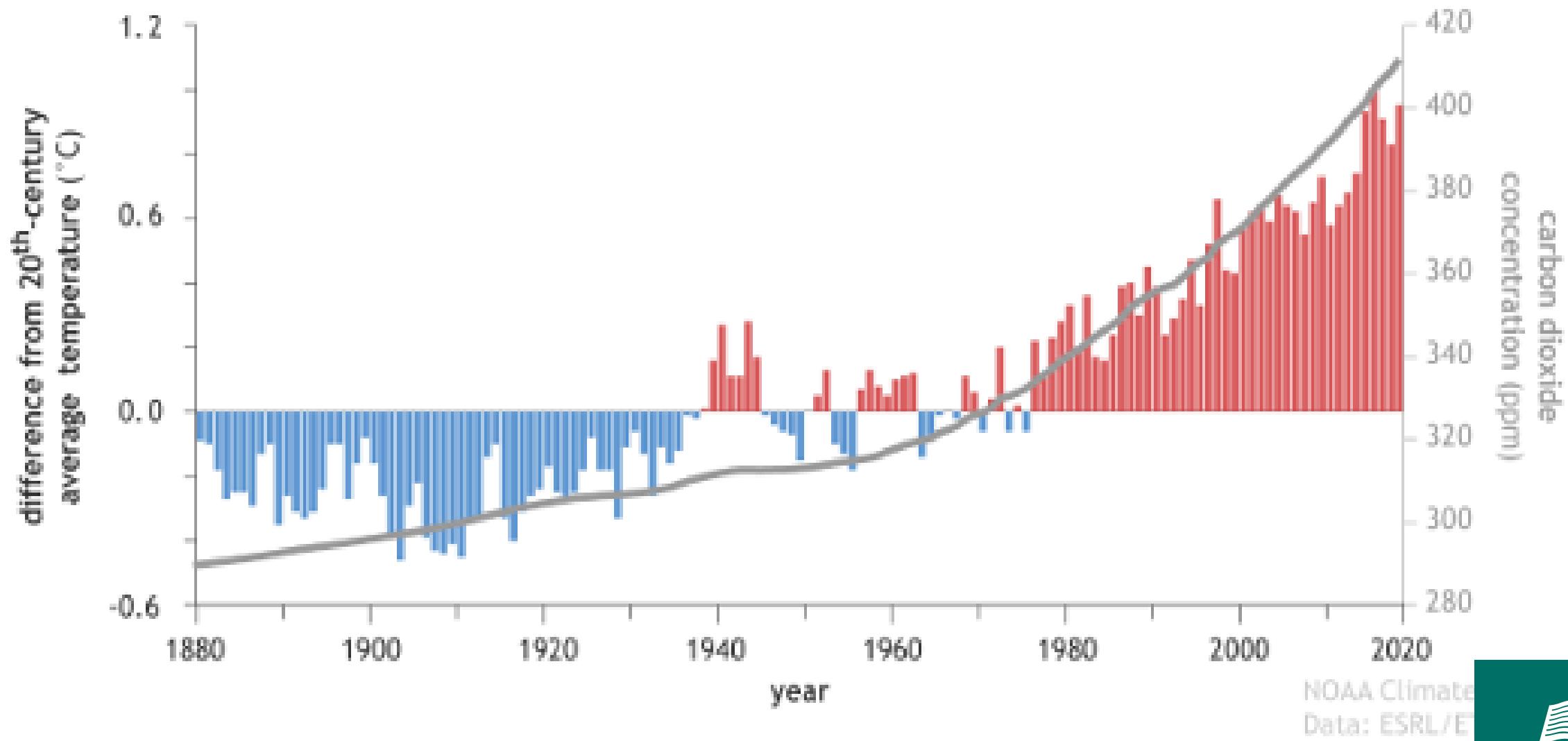
Elizabeth Auckley, MD
Internal Medicine PGY3

Joanne Bernstein, MD
M4 Climate Change and Human Health, Course Director

December 17, 2025


Learning objectives

- 1.Understand that human health and planetary health are directly linked, and climate change is a public health crisis
- 2.Define climate justice and list populations most vulnerable to climate change
- 3.Describe how climate change is changing the distribution and increasing prevalence of vector borne gastrointestinal infections
- 4.Understand the impact of climate change on food security and associated nutrient deficiencies, particularly in vulnerable populations
- 5.Identify that plant-based diets are mutually beneficial to patient health and planetary health


Learning objectives

- 1.Understand that human health and planetary health are directly linked, and climate change is a public health crisis
- 2.Define climate justice and list populations most vulnerable to climate change
- 3.Describe how climate change is changing the distribution and increasing prevalence of vector borne gastrointestinal infections
- 4.Understand the impact of climate change on food security and associated nutrient deficiencies, particularly in vulnerable populations
- 5.Identify that plant-based diets are mutually beneficial to patient health and planetary health

Planetary Health

Human-caused changes to earth systems that interact in complex ways to affect human health.

MEDICAL
COLLEGE.
OF WISCONSIN

Planetary Health

Causes

- Rapid industrialization
- Energy use
- Agricultural practices
- Deforestation
- Consumer practices
- Livestock
- Transport
- Resource extraction
- Pollution

Effects

- Rising temperatures
- Rising sea levels
- Unpredictable weather patterns
- Increase in extreme weather events
- Land degradation
- Loss of wildlife and biodiversity

MEDICAL
COLLEGE.
OF WISCONSIN

Air Pollution & Increasing Allergens

Asthma, allergies, cardiovascular and respiratory diseases

Extreme Heat

Heat-related illness and death, cardiovascular failure

Drought

Water supply impacts, dust storms, Valley Fever

Environmental Degradation

Forced migration, civil conflict, loss of jobs and income

Wildfires & Wildfire Smoke

Injuries, fatalities, loss of homes, cardiovascular and respiratory diseases

Mental Health Impacts

Rising Temperatures

IMPACTS OF CLIMATE CHANGE ON HUMAN HEALTH

More Extreme Weather

Increasing GHG Levels

Rising Sea Levels

Stress, anxiety, depression, sense of loss, post-traumatic stress disorder, strains on social relationships

Degraded Living Conditions & Social Inequities

Exacerbation of racial and health inequities and vulnerabilities, loss of employment

Changes In Vector Ecology

Lyme disease, West Nile Virus, hantavirus, malaria, encephalitis

Food System Impacts

Malnutrition, food insecurity, higher food prices, foodborne illness

Severe Weather & Floods

Injuries, fatalities, loss of homes, indoor fungi and mold

Water Quality Impacts

Harmful algal blooms, campylobacteriosis, cryptosporidiosis, leptospirosis

CDPH (Adapted from CDC, J. Patz)

<https://www.cdph.ca.gov/Programs/OHE/pages/CCHEP.aspx>

Learning objectives

- 1.Understand that human health and planetary health are directly linked, and climate change is a public health crisis
- 2.**Define climate justice and list populations most vulnerable to climate change**
- 3.Describe how climate change is changing the distribution and increasing prevalence of vector borne gastrointestinal infections
- 4.Understand the impact of climate change on food security and associated nutrient deficiencies, particularly in vulnerable populations
- 5.Identify that plant-based diets are mutually beneficial to patient health and planetary health

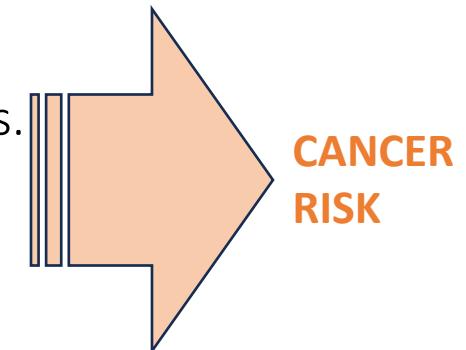
Define Climate Justice

- Recognizes the disproportionate impacts of climate change on low-income communities and communities of color around the world, the people and places least responsible for the problem.
- "Managing disasters, especially those that are climate-induced, calls for reducing vulnerabilities as an essential step in reducing impacts"

Who is vulnerable to Climate change impacts?

Most vulnerable populations

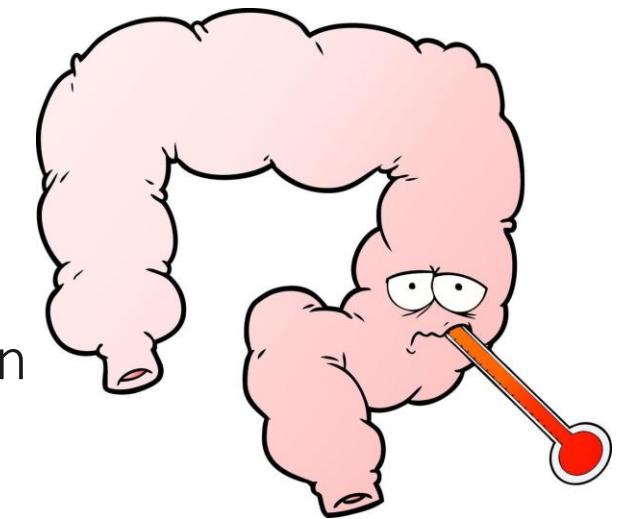
- Children
- Pregnant women
- Elderly individuals
- People with chronic illnesses and allergies
- People with limited resources
- Student athletes



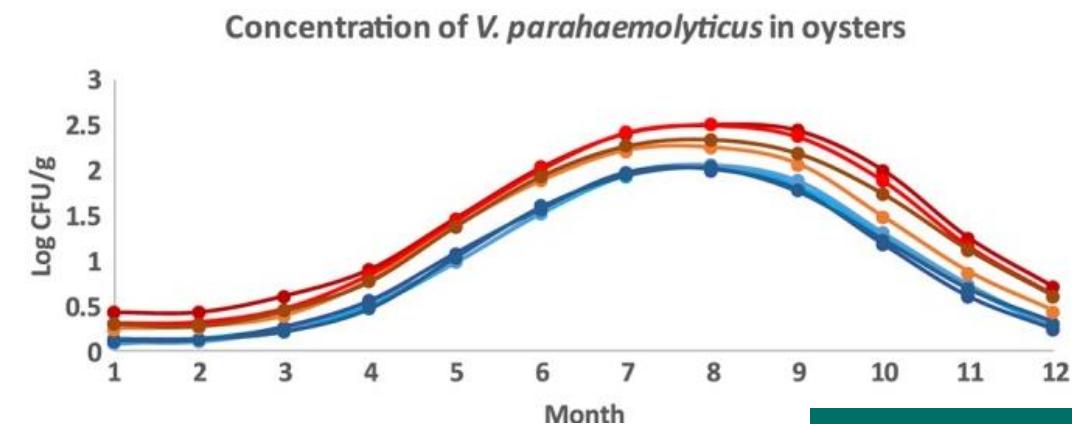
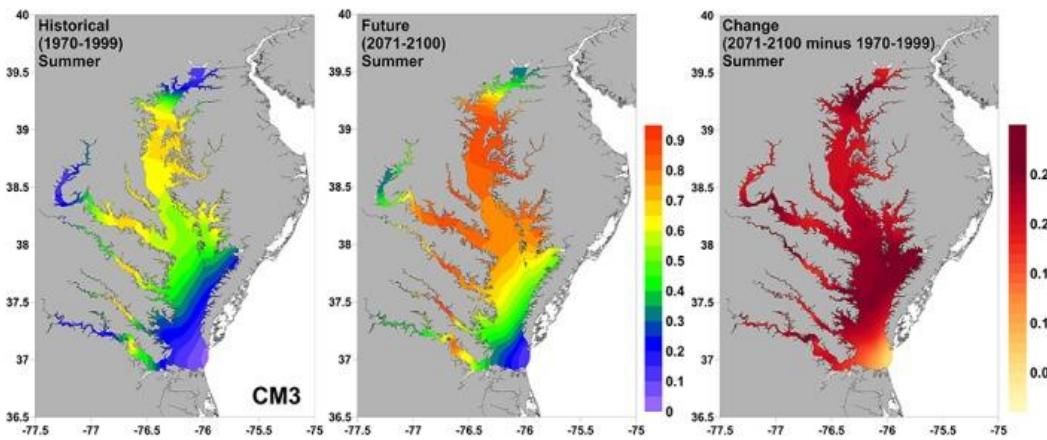
Learning objectives

- 1.Understand that human health and planetary health are directly linked, and climate change is a public health crisis
- 2.Define climate justice and list populations most vulnerable to climate change
- 3.**Describe how climate change is changing the distribution and increasing prevalence of vector borne gastrointestinal infections**
- 4.Understand the impact of climate change on food security and associated nutrient deficiencies, particularly in vulnerable populations
- 5.Identify that plant-based diets are mutually beneficial to patient health and planetary health

Vector Borne GI Illness


- Higher temperatures & shifting precipitation are the *perfect storm* for foodborne illnesses to proliferate
- **HEAT**
 - Decreases biodiversity of soil and water
 - Increases levels of E Coli, shigella, lactococcus, Vibrio in agriculture
 - increases *Salmonella* spp., *E. coli*, and *Campylobacter jejuni* in food supplies.
- For every 1°C rise in temperature, the risk of bacterial infection from *Salmonella* and *Campylobacter* increases by 5%

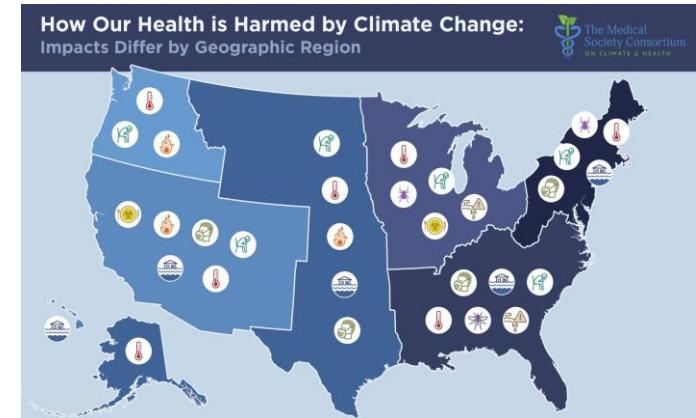
Vector Borne GI Illness



- **COLD**

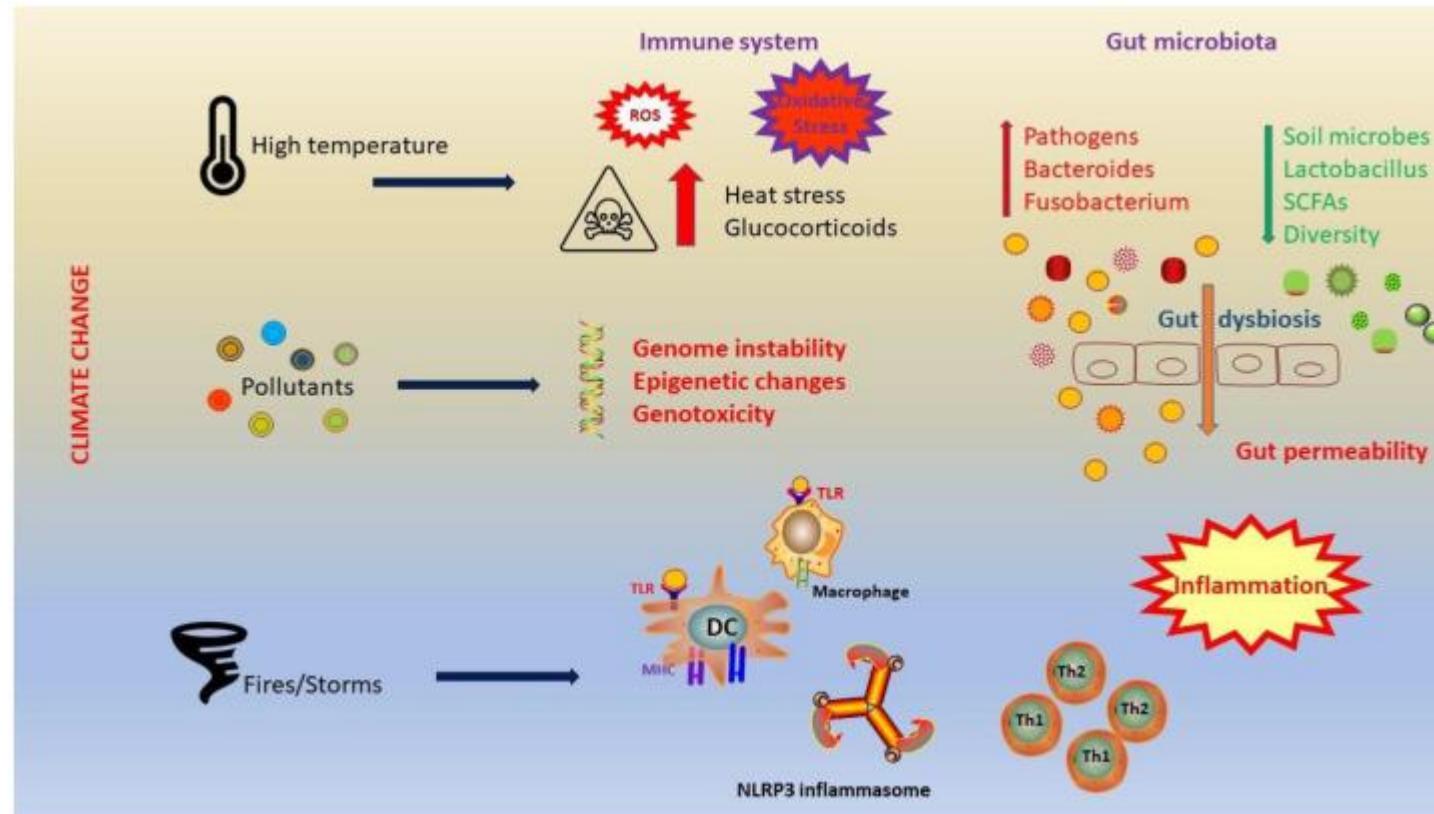
- Reduced richness of micronutrients of soil
- increases gut permeability
- More colonic cell apoptosis
- Inflammation
- oxidative stress
- Changes in morphology and structural integrity of the colon
- disruption of tight junctions in epithelial tissue.

Case Study: *Vibrio* in Chesapeake Bay

- *V. parahaemolyticus* and *V. Vulnificus* are endemic to the US
 - 34,000 cases with \$360 million in health care costs
- *V. cholerae*, *V. parahaemolyticus*, and *V. Vulnificus* occur naturally in the Chesapeake Bay
- *Vibrio* infections may be increasing in coastal oceans in association with **HEAT**



- Climate change may cause increases in season length and spatial habitat for *V. vulnificus* and *V. parahaemolyticus* in the Chesapeake Bay



What else?

- Climate-related stressors impair the efficacy of the epithelial barriers
 - first line of defense against pathogens
 - hyperstimulate the innate immunity
 - affect the adaptive one
- Storms, extreme temperatures, etc.
 - encourage human social gathering for safety
 - INCREASE transmission of communicable pathogens
- Climate-related hazards aggravate over half of infectious diseases impacting humans worldwide

A moment for the Gut Microbiome

- Heat causes a shift in microbiota:
 - Increases in *Bacteroides* and *Fusobacterium*
- Mimics gut microbiome in malnutrition
- Leads to elevated gut permeability and inflammation

Learning objectives

- 1.Understand that human health and planetary health are directly linked, and climate change is a public health crisis
- 2.Define climate justice and list populations most vulnerable to climate change
- 3.Describe how climate change is changing the distribution and increasing prevalence of vector borne gastrointestinal infections
- 4.**Understand the impact of climate change on food security and associated nutrient deficiencies, particularly in vulnerable populations**
- 5.Identify that plant-based diets are mutually beneficial to patient health and planetary health

Climate Change and Our Food

- Rising temperatures in the Great Plains
 - Reduced yield in maize, soybeans, and wheat on American farms
- Climate-caused extreme drought and changes to riparian habitats
 - decreased yield in seafood and marine food (waterfowl, crab, and oysters)
- Increased heatwaves and droughts in 2021 vs 1981-2010
 - 127 million more people with significant food insecurity
- Microplastics decrease photosynthesis, leading to loss in food production
 - Estimated loss in seafood and crop production is **9.56% of global supply**

Discussion: Malnutrition

Name a population **at risk** for malnutrition due to climate change and **WHY**

VULNERABILITY

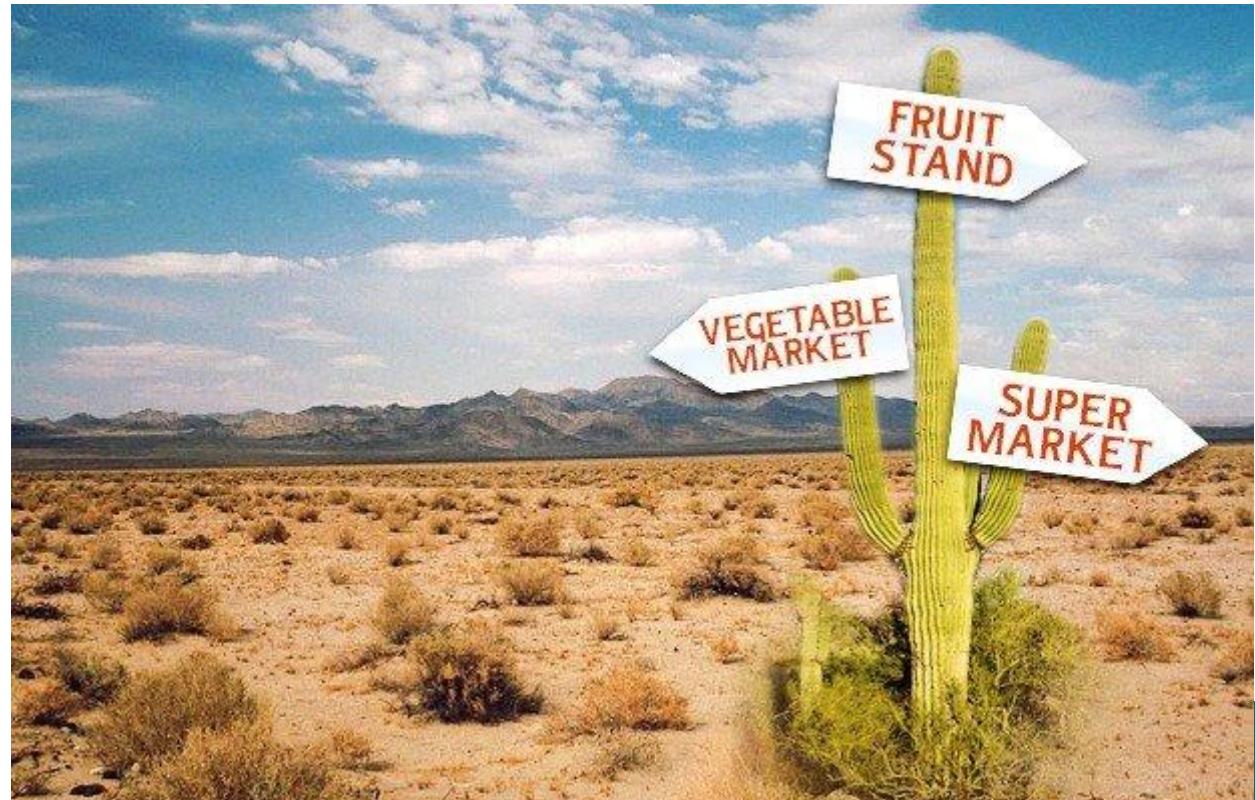
=

EXPOSURE

+

SENSITIVITY

+


ADAPTIVE CAPACITY

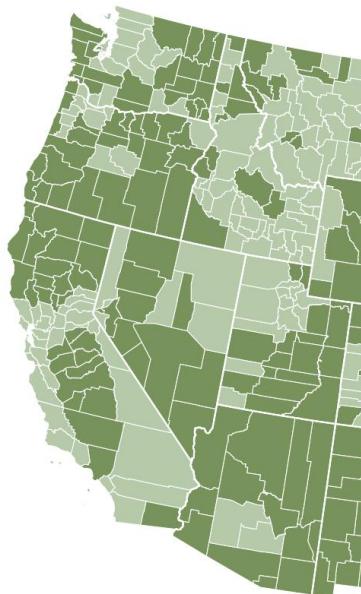
MEDICAL
COLLEGE.
OF WISCONSIN

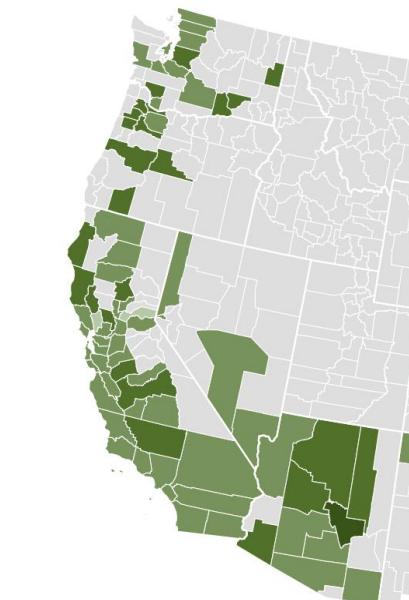
Food Deserts

- Children
- Pregnant women
- Elderly individuals
- People with chronic illnesses and allergies
- People with limited resources
- Student athletes
- Cirrhosis patients
- IBD patients
- IBS/functional disease
- Pancreas patients
- Celiac patients

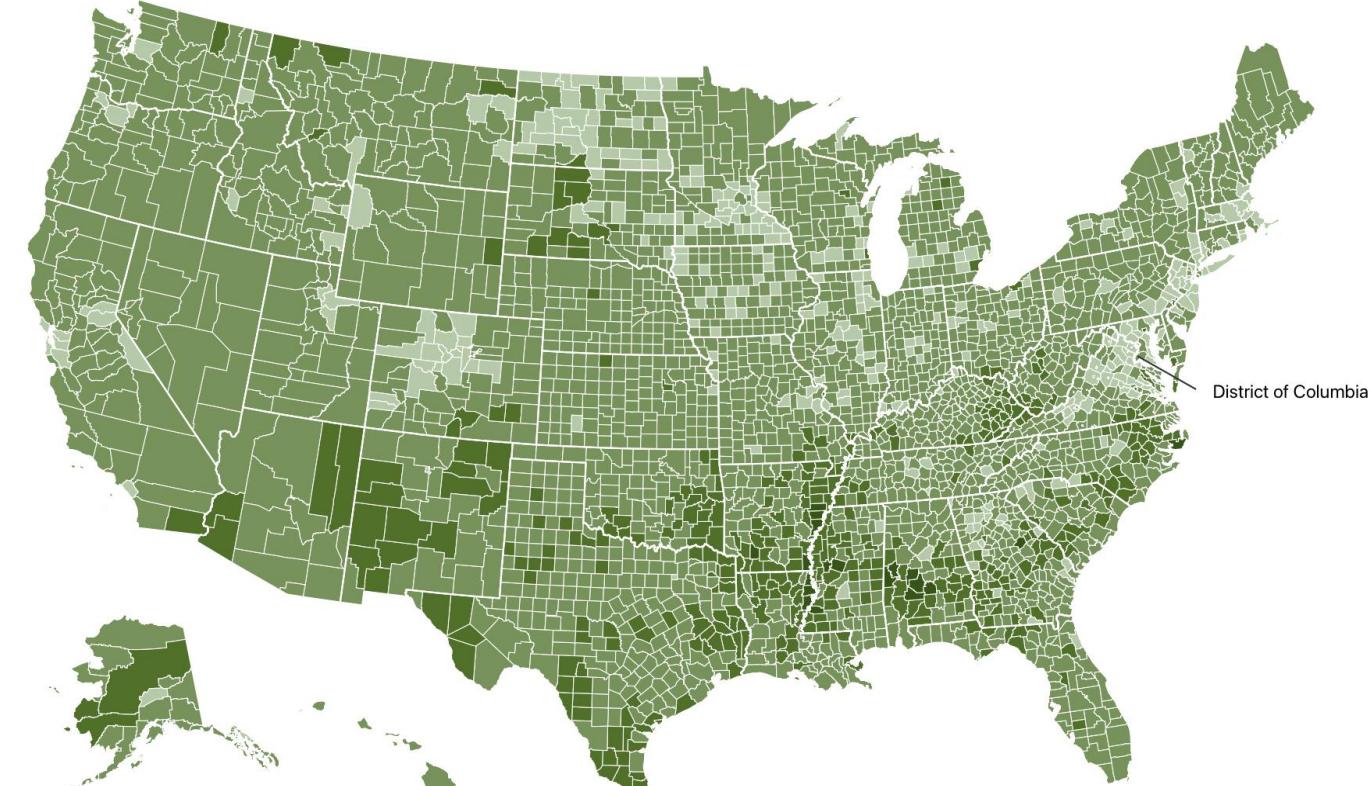
MEDICAL
COLLEGE
OF WISCONSIN

Food Insecurity and Climate Change


Food insecurity is the distance someone has to travel to obtain food, and how much food they can afford

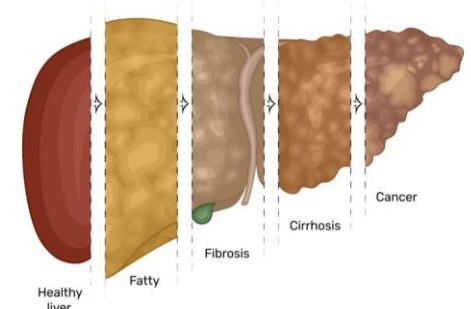

Vulnerability variables	Evidence for vulnerability	Value of variable for resilient food system
Population-resource conditions		
Availability of food	Insufficient calories or nutrients	Balance of available resources and population size reduces risk of shortfall
Diversity of available, accessible food	Inadequate range of resources responsive to varied conditions	Diverse portfolio reduces risk, increases options (9)
Health of food resources	Depleted or degraded resources, habitats	Healthy habitats contribute to managing risk and change (26, 49)
Social conditions		
Connections	Limited connections with others experiencing different conditions	Social networks expand access to food and land (26) and are sources for risk pooling (49)
Storage	Insufficient, inaccessible storage	Stored foods reduce risk in times of shortage
Mobility	Inability to move away from challenging food conditions	Movement to alternative places, landscapes, and social groups offers potential for addressing resource shortfall through access to food/land (49)
Equal access	Unequal control and distribution of land, water, and food resources	Equal access avoids challenges to coping and adaptive capacity in disaster risk management
Barriers to resource areas	Physical barriers limiting access to key resource areas	Lack of barriers enhances capability of people to provision themselves with food

Food Insecurity


$$\text{VULNERABILITY} = \text{EXPOSURE} + \text{SENSITIVITY} + \text{ADAPTIVE CAPACITY}$$

Overall

Black


Children

<https://map.feedingamerica.org/county/2022/senior-60-plus>

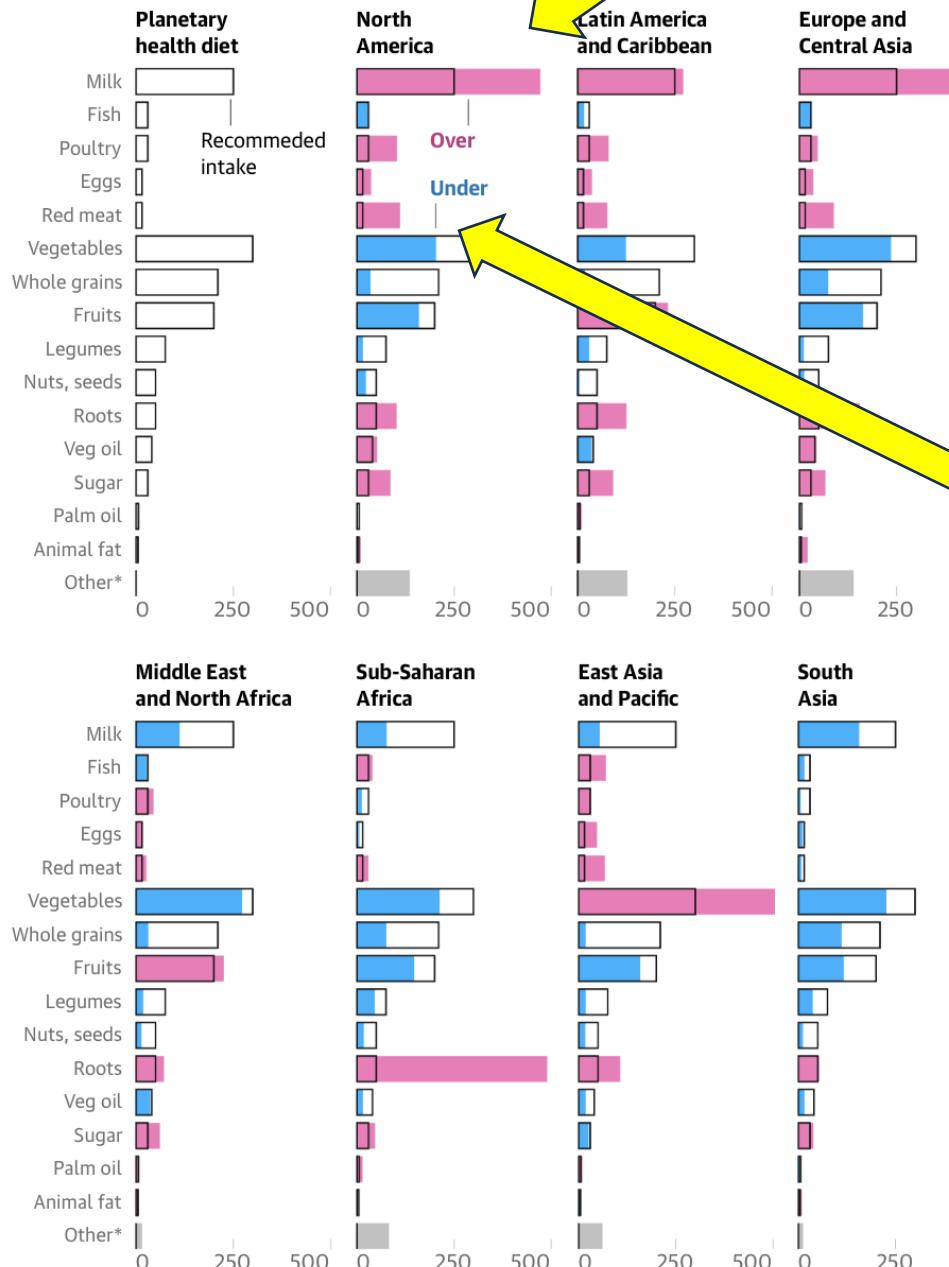
Food Insecurity Rates ⓘ
No Data 0-13.0% 13.1-26.0% 26.1-39.0% 39.1-52.0% 52.1-65%

Special GI populations

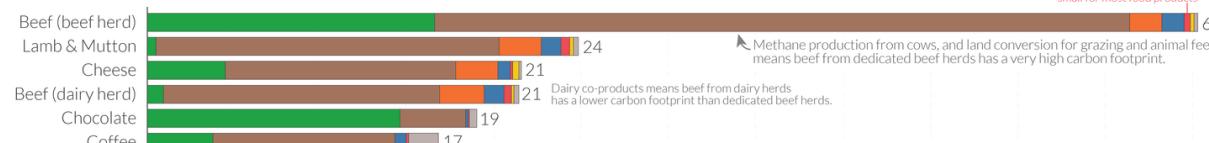
- IBS
 - “Solastalgia” represents a modern concept aimed at comprehending the connections between human wellbeing and ecosystem health.
- IBD
 - exacerbations of IBD correlated with extreme temperatures and seasonal fluctuations
- Liver
 - high temperatures liver ischemia and hepatocyte necrosis,
 - resulting from peripheral vasodilation and splanchnic vasoconstriction.
- Pancreas
 - extreme heat = pancreatic cytotoxicity

Gastrointestinal Climate Disease

Impacts of Environmental Change on Digestive Health		
Increasing Temperatures:	Increasing Extreme Weather, Hurricanes, Storms, and Flooding:	Decreasing Air Quality
A. Direct effects: Pancreatic, intestinal, and hepatic injury. Exacerbation of IBD. Epigenetic effects. 	A. Physical and mental health injury. 	A. Eosinophilic esophagitis, appendicitis, irritable bowel syndrome, IBD. Esophageal, colon and hepatic cancer. MAFLD.
B. Decreasing Access to Quality Food and Nutrition: Malnutrition. Increase in MAFLD, IBD incidence of CD from processed food. Hepatic cancer from aflatoxins. 	B. Infrastructure damage. Interruption of medical care. Supply chain disruption. 	B. Wildfires with infrastructure loss, groundwater pollution and generation of particulate matter.
C. Decreasing Access to Quality Water: Ingestion of poor-quality water with increased risk of infection and exposure to chemical pollution. Decreasing food production. Effects of drought. 	C. Increased flooding: Associated with infection from Norovirus, Adenovirus, Rotavirus, Cryptosporidium, Giardia, Campylobacter, Yersinia, Clostridium Difficile, Shigella, Salmonella, pathogenic E Coli, Vibrio Cholera, Amebiasis, Leptospirosis, Hepatitis A, Hepatitis E, Schistosomiasis, Ancylostoma duodenale, Ascaris, Trichuris, and liver flukes. 	Increasing Migration and Conflict



Learning objectives


- 1.Understand that human health and planetary health are directly linked, and climate change is a public health crisis
- 2.Define climate justice and populations most vulnerable to climate change
- 3.Describe the direct relationship of climate change and the changing distribution and increasing prevalence of vector borne gastrointestinal infections
- 4.Understand the impact of climate change on food security, and particularly in vulnerable populations, and associated nutrient deficiencies
- 5.Identify that plant-based diets are mutually beneficial to patient health and planetary health

Planetary health diet v current diets

Adult diets in 2020 v planetary health recommendation per capita intake in gramm

Food: greenhouse gas emissions across the supply chain

7 x over recommendation
for red meat!

Note: Greenhouse gas emissions are given as global average values based on data across 38,700 commercially viable farms in 119 countries.

OurWorldInData.org - Research and data to make progress against the world's largest problems.

What is your dietary carbon footprint?

- <https://harvard-foodprint-calculator.github.io/>

328kg 3,971g 379,337L

CARBON

NITROGEN

WATER

Elizabeth's diet: vegetarian

328kg of Carbon is below the
also below the 680kg maxi

Your Diet's

910

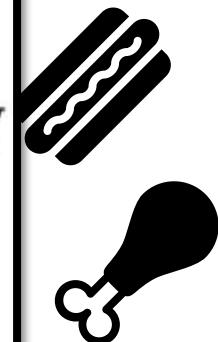
CARBON

910kg of Carbon is below the US national
maximum upper limit of a sustainable diet

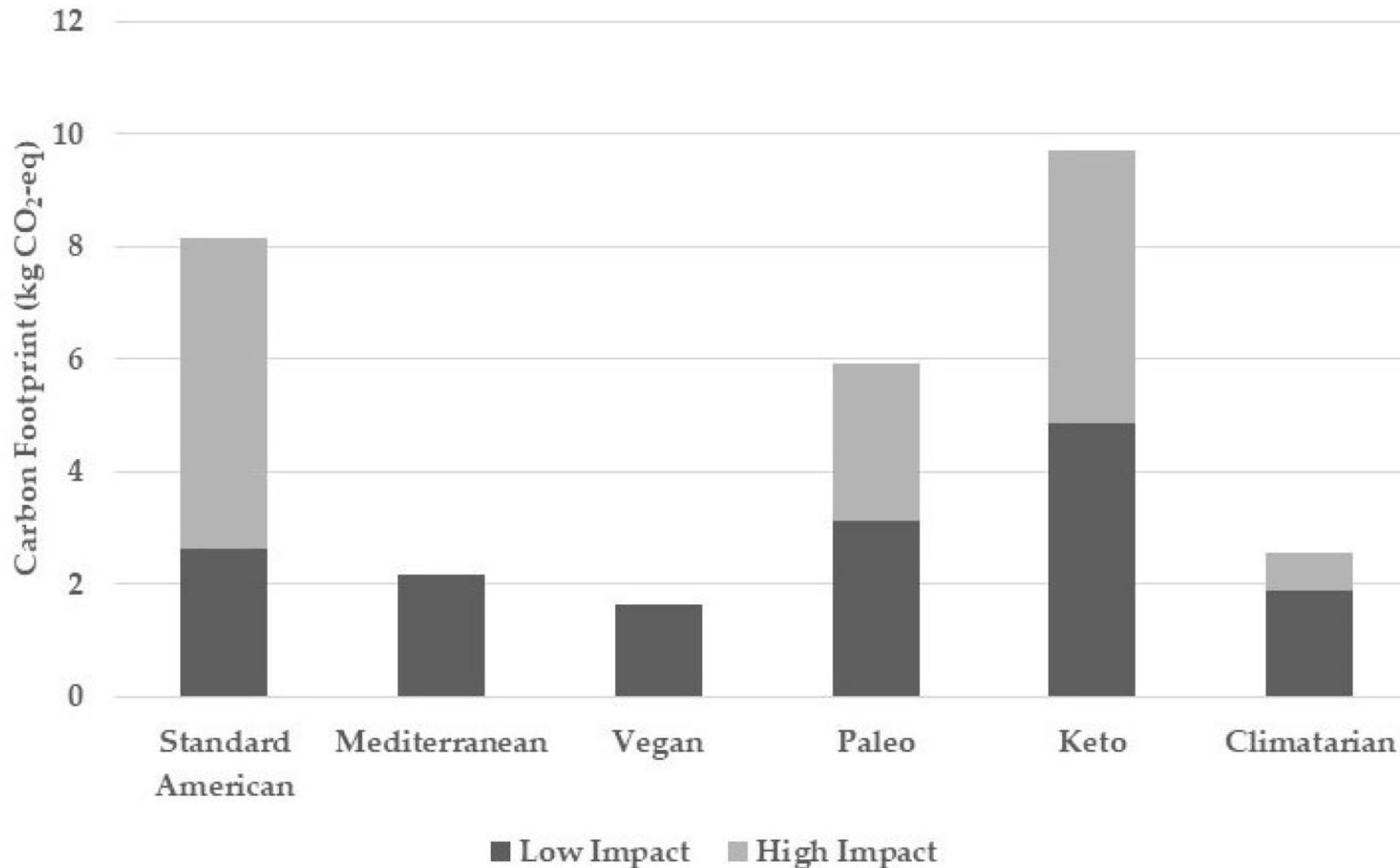
For your reference, emitting 910kgs of C
polar ice every year.^{4,5} 10,880g of Nitrog
additional 240 pounds of fertilizer every
every day!⁷

1,697

CARBON


1697kg of Carbon is below the US national per capita average of 1750kg carbon emissions every year² but above the 680kg
maximum upper limit of a sustainable diet necessary to prevent climate catastrophe.³

For your reference, emitting 1,697kgs of Carbon is equivalent to burning 195 gallons of gasoline or melting 28 cubic feet of
polar ice every year.^{4,5} 22,098g of Nitrogen waste is equivalent to emitting an additional 6,585kgs of carbon or polluting an
additional 487 pounds of fertilizer every year.^{1,4} 620,688L of water consumption is equivalent to using 13 bathtubs of water
every day!⁷



The PHD recommends plant-rich, flexible diets, including:

- Fruits and vegetables - at least five portions a day
- Whole grains - three to four portions a day
- Nuts - one portion per day
- Legumes (beans, peas, lentils) - one portion per day
- Dairy - one serving of milk, yoghurt or cheese portions a day
- Eggs - three to four a week
- Chicken - two portions a week
- Fish - two portions a week
- Red meat - one portion a week

Comparing common diets' climate impact

Dixon KA, Michelsen MK, Carpenter CL. Modern Diets and the Health of Our Planet: An Investigation into the Environmental Impacts of Food Choices. *Nutrients*. 2023; 15(3):692.

"Climatarian diet"

- Local, seasonal, and fresh food
- Plant-based, avoiding ruminant meats (beef, lamb, goat) and moderate intake of pork, poultry, and sustainable fish
- "Flexitarian"

<https://climatarian.com/eating-climatarian/>

What is one dietary change you could make to **improve your health** and lower your carbon footprint?

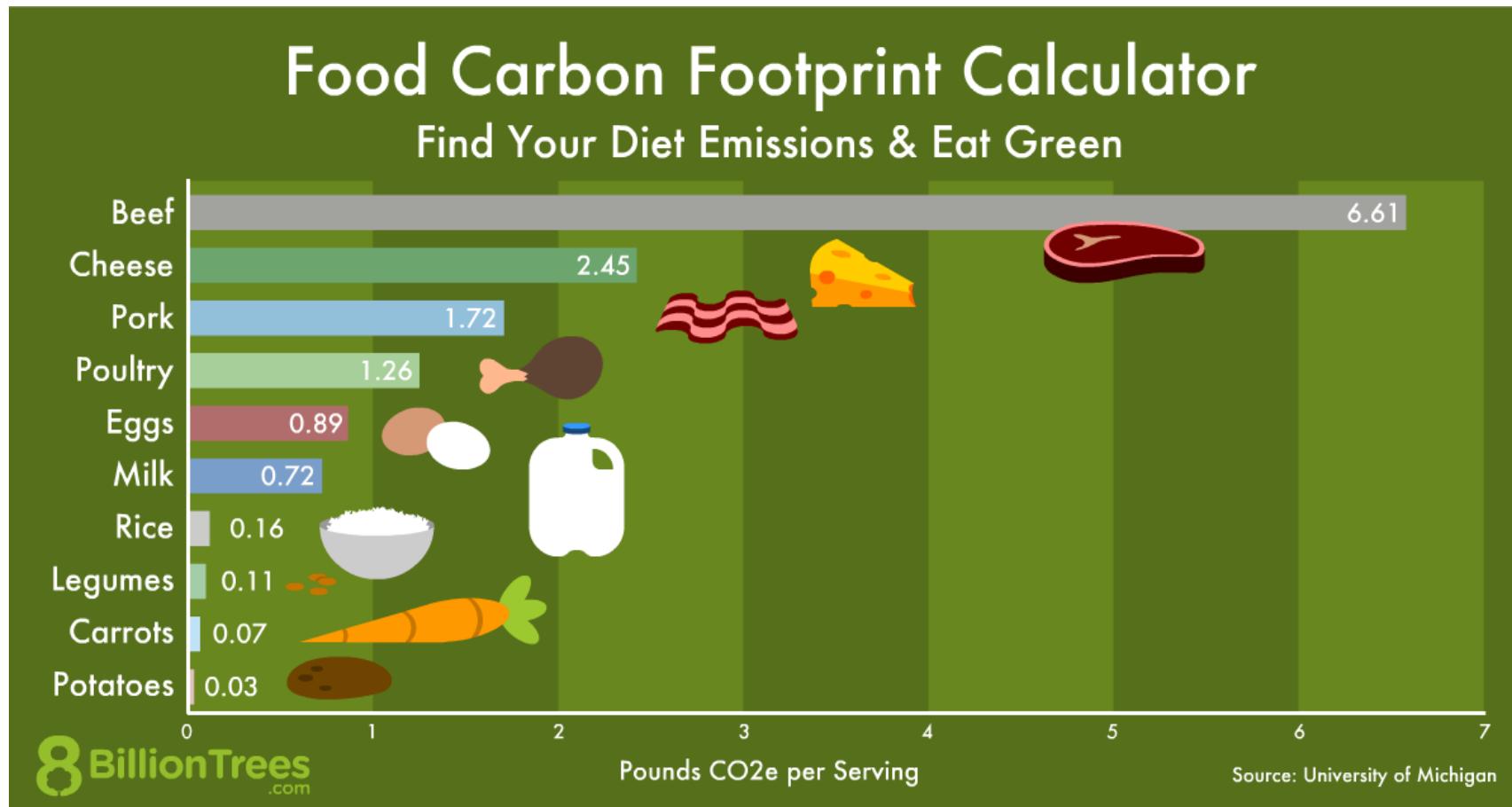


TABLE 4-9. SUMMARY OF THE ANNUAL CRADLE-TO-CONSUMER ENVIRONMENTAL FOOTPRINT OF U.S. FLW

Environmental Impact	Environmental Footprint			
	Total (Standard Units)	Per Person	Percentage of U.S. Cradle-to-Consumer Food System Footprint	Percentage of U.S. Footprint
Land Use	560,000 km ² • (140 million acres)	1,800 m ² □ (19,000 sq ft)	16% of agricultural land •	—
Water Use ^a	22 trillion L • (5.9 trillion gallons)	71,000 L □ (19,000 gallons)	17% of freshwater used •	5%
Pesticide Application	350 million kg ^b (780 million pounds)	1 kg • (2.5 pounds)	—	—
Fertilizer Application	6,350 million kg • (14 billion pounds)	20.2 kg • ^b (44.5 pounds)	42% of total fertilizers used	—
Energy Use	2,400 million GJ (664 billion kWh)	7.7 GJ • (2,140 kWh)	20% of energy used	2%
GHG Emissions	170 million MTCO ₂ e •	540 kg CO ₂ e □	16% of GHG emissions •	2%

• = calculated

□ = personal communication with author

^a Blue water use.

^b Accounts for only consumer FLW

Farm-to-Kitchen Environmental Footprint of U.S. Food Loss and Waste

(excluding impacts of waste management, such as landfill methane emissions)

GHG emissions of
42 coal-fired power plants

Enough water and energy to supply
more than 50 million homes

The amount of fertilizer used
to grow all plant-based foods

An area of agricultural land
equal to California and New York

FIGURE 4-9. ANNUAL CRADLE-TO-CONSUMER ENVIRONMENTAL FOOTPRINT OF U.S. FLW

This figure depicts the annual environmental footprint of producing, storing, processing, packaging, distributing, and preparing food that is ultimately lost or wasted in the United States. Data Source: U.S. EPA (2021a); USCB (2021); Pagan et al. (2020); U.S. DoE (2020); Vittuari et al. (2020); U.S. EPA (2018); Toth and Dou (2018).

MEDICAL
COLLEGE.
OF WISCONSIN

Med student impact – how can you get involved?

- Here at MCW
 - Center for Sustainability, Health, and the Environment (SHE)
 - MS4SF
 - Phase 3 Climate Change and Human Health selective
 - Stay tuned for the Climate and Health workshop coming February 2026 from Dr. Bernstein and Dr. Wagner!

Med student impact – how can you get involved?

- State-wide
 - Healthy Climate Wisconsin
 - <https://www.healthyclimatewi.org/>
 - Local advocacy with elected representatives – they listen!!

Join MCW's Team

PLANETARY HEALTH REPORT CARD

Email Katie McShea to learn more!
Kmcshea@mcw.edu

2025 PLANETARY HEALTH REPORT CARD							
MEDICINE							
UNITED STATES							
(Click the school name to read their full report)							
Overall	Planetary Health Curriculum	Interdisciplinary Research	Community Outreach & Advocacy	Support for Student-led Initiatives	Campus Sustainability		
28. University of Massachusetts TH Chan	B	B-	B	B-	B	B	B-
29. Norton College of Medicine, SUNY Upstate Medical University	B	C+	B-	A	A-	C	
30. Indiana University	B	C+	B	C+	A	C	
31. Creighton University Phoenix Campus	B	B-	B-	B-	A	C	
32. Case Western Reserve University School of Medicine	B-	B	A-	C	B	C	
33. Columbia University	B-	C	A	C	A	C	
34. Loyola	B-	C-	B+	B-	B	B+	
35. Rush Medical College	B-	B	B-	C+	C	C	
36. Oregon Health and Science University	B-	A	C	C-	C	C	
37. Washington State University	B-	C+	A	D+	B	C	
38. Medical College of Wisconsin	B-	B	A-	C	B-	D	
39. Albert Einstein School of Medicine	C+	B	D-	B	A	D+	
40. Rosalind Franklin Chicago Medical School	C+	C+	C	B	B	D	
41. The George Washington University	C+	C	B	C+	C	C+	

80-100% = A 60-79% = B 40-59% = C 20-39% = D 0-19% = F

References

- <https://www.globalgiving.org/learn/cost-to-end-climate-change/>
- <https://medsocietiesforclimatehealth.org/reports/medical-alert/>
- Roos N, Kovats S, Hajat S, et al. Maternal and newborn health risks of climate change: A call for awareness and global action. *Acta Obstet Gynecol Scand.* 2021;100:566–570. <https://doi.org/10.1111/aogs.14124>
- Thomson MC, Stanberry LR. Climate Change and Vectorborne Diseases. *N Engl J Med.* 2022 Nov 24;387(21):1969-1978. doi: 10.1056/NEJMra2200092. PMID: 36416768.
- Nelson MC, Ingram SE, Dugmore AJ, Streeter R, Peeples MA, McGovern TH, Hegmon M, Arneborg J, Kintigh KW, Brewington S, Spielmann KA, Simpson IA, Strawhacker C, Comeau LE, Torvinen A, Madsen CK, Hambrecht G, Smiarowski K. Climate challenges, vulnerabilities, and food security. *Proc Natl Acad Sci U S A.* 2016 Jan 12;113(2):298-303. doi: 10.1073/pnas.1506494113. Epub 2015 Dec 28. PMID: 26712017; PMCID: PMC4720298.
- Belsey-Priebe M, Lyons D, Buonocore JJ. COVID-19's Impact on American Women's Food Insecurity Foreshadows Vulnerabilities to Climate Change. *Int J Environ Res Public Health.* 2021 Jun 26;18(13):6867. doi: 10.3390/ijerph18136867. PMID: 34206797; PMCID: PMC8296854.
- Agostoni C, Baglioni M, La Vecchia A, Molari G, Berti C. Interlinkages between Climate Change and Food Systems: The Impact on Child Malnutrition-Narrative Review. *Nutrients.* 2023 Jan 13;15(2):416. doi: 10.3390/nu15020416. PMID: 36678287; PMCID: PMC9865989.
- Farooq MS, Uzair M, Raza A, Habib M, Xu Y, Yousuf M, Yang SH, Ramzan Khan M. Uncovering the Research Gaps to Alleviate the Negative Impacts of Climate Change on Food Security: A Review. *Front Plant Sci.* 2022 Jul 11;13:927535. doi: 10.3389/fpls.2022.927535. PMID: 35903229; PMCID: PMC9315450.
- Rio P, Caldarelli M, Gasbarrini A, Gambassi G, Cianci R. The Impact of Climate Change on Immunity and Gut Microbiota in the Development of Disease. *Diseases.* 2024 Jun 3;12(6):118. doi: 10.3390/diseases12060118. PMID: 38920550; PMCID: PMC11202752.
- Leddin D. The Impact of Climate Change, Pollution, and Biodiversity Loss on Digestive Health and Disease. *Gastro Hep Adv.* 2024 Mar 2;3(4):519-534. doi: 10.1016/j.gastha.2024.01.018. PMID: 39131722; PMCID: PMC11307547.
- Muhling BA, Jacobs J, Stock CA, Gaitan CF, Saba VS. Projections of the future occurrence, distribution, and seasonality of three *Vibrio* species in the Gulf of Mexico under a high-emission climate change scenario. *Geohealth.* 2017 Sep 26;1(7):278-296. doi: 10.1002/2017GH000089. PMID: 32158993; PMCID: PMC5580620.
- <https://map.feedingamerica.org/county/2022/senior-60-plus>
- R. Zhu, Z. Zhang, N. Zhang, H. Zhong, F. Zhou, X. Zhang, C. Liu, Y. Huang, Y. Yuan, Y. Wang, C. Li, H. Shi, M.C. Rillig, F. Dang, H. Ren, Y. Zhang, & B. Xia. An estimate of multiecosystem photosynthesis losses under microplastic pollution, *Proc. Natl. Acad. Sci. U.S.A.* 122 (11) e2423957122, <https://doi.org/10.1073/pnas.2423957122> (2025).
- https://refed.org/uploads/refed_roadmap2030-FINAL.pdf

Acknowledgements

- Christa Wagner, PhD, Director, Center for Sustainability, Health and the Environment
- Joanne Bernstein, MD, Associate Professor, Course Director

